Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257039

RESUMO

Polymers play a crucial role in multiple industries; however, surface modification is necessary for certain applications. Exposure to non-thermal plasma provides a viable and environmentally beneficial option. Fused deposition molding utilizes biodegradable polylactic acid, although it encounters constraints in biomedical applications as a result of inadequate mechanical characteristics. This study investigates the effects of atmospheric pressure plasma generated by a dielectric barrier discharge system using helium and/or argon on the modification of polylactic acid surfaces, changes in their wettability properties, and alterations in their chemical composition. The plasma source was ignited in either He or Ar and was tailored to fit the best operational conditions for polymer exposure. The results demonstrated the enhanced wettability of the polymer surface following plasma treatment (up to 40% in He and 20% in Ar), with a marginal variation observed among treatments utilizing different gases. The plasma treatments also caused changes in the surface topography, morphology, roughness, and hydrophilicity. Plasma exposure also resulted in observable modifications in the dielectric characteristics, phase transition, and structure. The experimental findings endorse the utilization of plasma technologies at normal air pressure for environmentally friendly processing of polymer materials, specifically for applications that necessitate enhanced adhesion and have carefully selected prerequisites.

2.
Small ; 20(15): e2307006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37992252

RESUMO

Ferronematics that are generally based on nematic liquid crystals (LCs) doped with magnetic nanoparticles, synergistically taking advantage of the anisotropic and flow characteristics of the nematic host and the magnetic susceptibility of the dopant, have powerful applications as magnetically actuated soft materials. In this work, a Co(II) complex, which alone presents both characteristics, is built with a salen-type ligand 3,5-dichlorosubstituted at the aromatic nuclei and has a tetramethyldisiloxane spacer, which makes it one of the few metallomesogens containing this structural motif. Paramagnetic crystals, through heat treatment above 110 °C, change into magnetic nematic LCs. Applying a perpendicular magnetic field of 50 mT, the nematic droplets align two by two through dipole-dipole interactions. By incorporating it into a silicone matrix consisting mainly of polydimethylsiloxane, a 3D printable ink is formulated and crosslinked under various shapes. In this environment, the cobalt complex is stabilized in an LC state at room temperature and, due to its anisotropy, facilitates the mechanical response to magnetic stimuli. The resulting objects can be easily manipulated on fluid or rough surfaces using external magnetic fields, behave like magnets by themselves, and show reversible locomotion.

3.
Materials (Basel) ; 16(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687594

RESUMO

In this paper, we investigate the decomposition of a toxic organic compound, Rhodamine B, by the photocatalytic activities of undoped and nitrogen-doped ZrO2 thin films, deposited using the HiPIMS technique. The investigation was performed in the presence and in the absence of H2O2, for two types of experimental arrangements: the irradiation of the films, followed by dipping them in the Rhodamine B solutions, and the irradiation of the films dipped in the solution. The two situations were named "direct irradiation" and "indirect irradiation", respectively. Methods like XRD, AFM, XPS, DRS, water/film surface contact angle, and spectrophotometry were used to obtain information on the films' structure, surface morphology, elemental composition of the films surface, optical band gap, hydrophilicity, and photocatalytic activity, respectively. All these properties were described and correlated. By N-doping ZrO2, the films become absorbent in the visible domain, so that the solar light could be efficiently used; the films' hydrophilic properties improve, which is an important fact in self-cleaning applications; and the films' photocatalytic activity for the decomposition of Rhodamine B becomes better. The addition of hydrogen peroxide acted as an inhibitor for all systems and not as an accelerator of the photocatalytic reactions as expected.

4.
Polymers (Basel) ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37765625

RESUMO

The ellipsometric analyses reported in this paper present a novelty by bringing an in-depth optical investigation of some ternary organic blends. This study focuses on the tunability and control of the relative permittivity of active layers by varying the weight ratio of blended materials spin-coated as thin films. To investigate this, an extensive approach based on spectroscopic ellipsometry was conducted on ternary blend (D:A1:A2) thin films, involving a donor [D = chlorinated conjugated polymer (PBDB-T-2Cl)] and two acceptor materials [A1 = a non-fullerene (ITIC-F) and A2 = a fullerene (PCBM)]. The refractive index constitutes a key parameter that exposes insights into the feasibility of photovoltaic cells by predicting the trajectory of light as it transits the device. In this term, higher obtained refractive indexes support higher absorption coefficients. Notably, the dielectric constant can be rigorously tuned and finely calibrated by modest variations in the quantity of the third element, resulting in considerable modifications. Moreover, the inclusion of fullerene in blends, as the third element, results in a smooth topographical profile, further refining the surface of the film. From an electrical point of view, the ternary blends outperform the polymer thin films. The synergistic interaction of constituents emphasizes their potential to enhance solar conversion devices.

5.
Front Chem ; 11: 1239964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638103

RESUMO

In the global context of climate change and carbon neutrality, this work proposes a strategy to improve the light absorption of photocatalytic water-splitting materials into the visible spectrum by anion doping. In this framework, reactive high power impulse magnetron sputtering (HiPIMS) of a pure Zr target in Ar/N2/O2 gas mixture was used for the deposition of crystalline zirconium oxynitride (ZrO2-xNx) thin films with variable nitrogen doping concentration and energy band-gap. The nitrogen content into these films was controlled by the discharge pulsing frequency, which controls the target surface poisoning and peak discharge current. The role of the nitrogen doping on the optical, structural, and photocatalytic properties of ZrO2-xNx films was investigated. UV-Vis-NIR spectroscopy was employed to investigate the optical properties and to assess the energy band-gap. Surface chemical analysis was performed using X-ray photoelectron spectroscopy, while structural analysis was carried out by X-ray diffraction. The increase in the pulse repetition frequency determined a build-up in the nitrogen content of the deposited ZrO2-xNx thin films from ∼10 to ∼25 at.%. This leads to a narrowing of the optical band-gap energy from 3.43 to 2.20 eV and endorses efficient absorption of visible light. Owing to its narrow bandgap, ZrO2-xNx thin films obtained by reactive HiPIMS can be used as visible light-driven photocatalyst. For the selected processing conditions (pulsing configuration and gas composition), it was found that reactive HiPIMS can suppress the hysteresis effect for a wide range of frequencies, leading to a stable deposition process with a smooth transition from compound to metal-sputtering mode.

6.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500619

RESUMO

Silicone elastomer composites with piezoelectric properties, conferred by incorporated polyimide copolymers, with pressure sensors similar to human skin and kinetic energy harvester capabilities, were developed as thin film (<100 micron thick) layered architecture. They are based on polymer materials which can be produced in industrial amounts and are scalable for large areas (m2). The piezoelectric properties of the tested materials were determined using a dynamic mode of piezoelectric force microscopy. These composite materials bring together polydimethylsiloxane polymers with customized poly(siloxane-imide) copolymers (2−20 wt% relative to siloxanes), with siloxane segments inserted into the structure to ensure the compatibility of the components. The morphology of the materials as free-standing films was studied by SEM and AFM, revealing separated phases for higher polyimide concentration (10, 20 wt%). The composites show dielectric behavior with a low loss (<10−1) and a relative permittivity superior (3−4) to pure siloxane within a 0.1−106 Hz range. The composite in the form of a thin film can generate up to 750 mV under contact with a 30 g steel ball dropped from 10 cm high. This capability to convert a pressure signal into a direct current for the tested device has potential for applications in self-powered sensors and kinetic energy-harvesting applications. Furthermore, the materials preserve the known electromechanical properties of pure polysiloxane, with lateral strain actuation values of up to 6.2% at 28.9 V/µm.


Assuntos
Eletricidade , Polímeros , Humanos , Polímeros/química , Siloxanas
7.
Nanomaterials (Basel) ; 12(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35808029

RESUMO

Flower-like ZnO architectures assembled with many nanorods were successfully synthesized through Thermionic Vacuum Arc, operated both in direct current (DC-TVA) and a pulsed mode (PTVA), and coupled with annealing in an oxygen atmosphere. The prepared coatings were analysed by scanning-electron microscopy with energy-dispersive X-ray-spectroscopy (SEM-EDX), X-ray-diffraction (XRD), and photoluminescence (PL) measurements. By simply modifying the TVA operation mode, the morphology and uniformity of ZnO nanorods can be tuned. The photocatalytic performance of synthesized nanostructured ZnO coatings was measured by the degradation of methylene-blue (MB) dye and ciprofloxacin (Cipro) antibiotic. The ZnO (PTVA) showed enhancing results regarding the photodegradation of target contaminants. About 96% of MB molecules were removed within 60 min of UV irradiation, with a rate constant of 0.058 min-1, which is almost nine times higher than the value of ZnO (DC-TVA). As well, ZnO (PTVA) presented superior photocatalytic activity towards the decomposition of Cipro, after 240 min of irradiation, yielding 96% degradation efficiency. Moreover, the agar-well diffusion assay performance against both Gram-positive and Gram-negative bacteria confirms the degradation of antibiotic molecules by the UV/ZnO (PTVA) approach, without the formation of secondary hazardous products during the photocatalysis process. Repeated cyclic usage of coatings revealed excellent reusability and operational stability.

8.
Nanomaterials (Basel) ; 12(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35335747

RESUMO

The role of Ag addition on the structural, dielectric, and mechanical harvesting response of 20%(xAg - (1 - x)BaTiO3) - 80%PVDF (x = 0, 2, 5, 7 and 27 vol.%) flexible composites is investigated. The inorganic fillers were realized by precipitating fine (~3 nm) silver nanoparticles onto BaTiO3 nanoparticles (~60 nm average size). The hybrid admixtures with a total filling factor of 20 vol.% were embedded into the PVDF matrix. The presence of filler enhances the amount of ß-PVDF polar phase and the BaTiO3 filler induces an increase of the permittivity from 11 to 18 (1 kHz) in the flexible composites. The addition of increasing amounts of Ag is further beneficial for permittivity increase; with the maximum amount (x = 27 vol.%), permittivity is three times larger than in pure PVDF (εr ~ 33 at 1 kHz) with a similar level of tangent losses. This result is due to the local field enhancement in the regions close to the filler-PVDF interfaces which are additionally intensified by the presence of silver nanoparticles. The metallic addition is also beneficial for the mechanical harvesting ability of such composites: the amplitude of the maximum piezoelectric-triboelectric combined output collected in open circuit conditions increases from 0.2 V/cm2 (PVDF) to 30 V/cm2 for x = 27 vol.% Ag in a capacitive configuration. The role of ferroelectric and metallic nanoparticles on the increasing mechanical-electric conversion response is also been explained.

9.
Nanomaterials (Basel) ; 12(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35159857

RESUMO

Due to an attractive combination of chemical and physical properties, silicon carbide (SiC) thin films are excellent candidates for coatings to be used in harsh environment applications or as protective coatings in heat exchanger applications. This work reports the deposition of near-stoichiometric and nanocrystalline SiC thin films, at room temperature, on silicon (100) substrates using a DCMS/HiPIMS co-sputtering technique (DCMS-direct current magnetron sputtering; HiPIMS-high-power impulse magnetron sputtering). Their structural and mechanical properties were analyzed as a function of the process gas pressure. The correlation between the films' microstructure and their mechanical properties was thoroughly investigated. The microstructure and morphology of these films were examined by appropriate microscopic and spectroscopic methods: atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Raman spectroscopy, while their mechanical and tribological properties were evaluated by instrumented indentation and micro-scratch techniques. The lowest value of the working gas pressure resulted in SiC films of high crystallinity, as well as in an improvement in their mechanical performances. Both hardness (H) and Young's modulus (E) values were observed to be significantly influenced by the sputtering gas pressure. Decreasing the gas pressure from 2.0 to 0.5 Pa led to an increase in H and E values from 8.2 to 20.7 GPa and from 106.3 to 240.0 GPa, respectively. Both the H/E ratio and critical adhesion load values follow the same trend and increase from 0.077 to 0.086 and from 1.55 to 3.85 N, respectively.

10.
Materials (Basel) ; 14(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34885280

RESUMO

The α-phase waveguides directly produced in one fabrication step only are well known for preserving both the excellent nonlinear properties and the ferroelectric domains orientation of lithium niobate substrates. However, by using the piezoresponse force microscopy (PFM), we present a coherent study on ferroelectric dipoles switching induced by the fabrication process of α-phase waveguides on Z-cut congruent lithium niobate (CLN) substrates. The obtained results show that the proton exchange process induces a spontaneous polarization reversal and a reduction in the piezoelectric coefficient d33. The quantitative assessments of the impact of proton exchange on the piezoelectric coefficient d33 have been quantified for different fabrication parameters. By coupling systematic PFM investigation and optical characterizations of α-phase protonated regions and virgin CLN on ±Z surfaces of the samples, we find a very good agreement between index contrast (optical investigation) and d33 reduction (PFM investigations). We clearly show that the increase in the in-diffused proton concentration (increase in index contrast) in protonated zones decreases the piezoelectric coefficient d33 values. Furthermore, having a high interest in nonlinear performances of photonics devices based on PPLN substrates, we have also investigated how deep the spontaneous polarization reversal induced by proton exchange takes place inside the α-phase channel waveguides.

11.
Nanotechnology ; 28(25): 255302, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28471756

RESUMO

Titanium oxide/silicon oxide (TiO2/SiO2) 2D patterns were obtained by magnetron sputtering depositions of Ti on close-packed and size-reduced colloidal masks on Si and quartz substrates, followed by mask lift-off and ending with thermal oxidation. The physical processes involved in growing 2D Ti patterns and their oxidation are analyzed. For the magnetron sputtering deposition, two regimes are considered: the low-pressure regime when the flux of sputtered atoms is anisotropic, and the high-pressure regime, when the flux of sputtered atoms is isotropic due to frequent collisions. Moreover, magnetron sputtering operation modes, such as dc sputtering and high power impulse sputtering, are compared. The changes in pattern size and morphology determined by the oxidation of the Ti patterns and Si substrate are analyzed. The hydrophilicity induced by UV-light irradiation and the visible-light photocatalytic activity towards the degradation of the methylene blue of the fabricated TiO2/SiO2 patterns were considerably higher when compared to the performances of uniform TiO2 films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...